

INTEGRATED <mark>SINK ENHANCEMENT</mark> ASSESSMENT

Mitigation in EU agriculture

GHG abatement and carbon sequestration costs

Stéphane De Cara Pierre-Alain Jayet

INRA, UMR Economie Publique, Grignon, France

22 June 2006 - INSEA Final meeting Brussels, Belgium

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

INRA's participation to INSEA

- Development of a farm-type model of the European agricultural supply
- Assessment of GHG marginal abatement cost curves
- Disaggregated approach: focus on results at the farm-type level
- Analysis of the role of farm-type heterogeneity in the design of economic instruments
- Economic evaluation of incentives to adopt carbon-friendly agricultural practices
- Analysis of interactions between GHG abatements and carbon sequestration

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

INRA' participation to INSEA

ITTINSE

-

<

(≣) ≣ の

Outline

Introduction

A farm-type based modelling approach

Overview Farm typology Key modelling features

GHG emissions from agriculture

Agricultural GHG emission accounting EU-wide marginal abatement cost curves Regional and individual distribution of marginal abatement costs

Carbon sequestration through alternative tillage practices

Alternative tillage practices: Modelling approach and assumptions Results

Concluding remarks

-

- How much does it cost to farmers to meet a given abatement target?
- For a given CO₂eq price, by how much farmers are willing to reduce their emissions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- How much does it cost to farmers to meet a given abatement target?
- For a given CO₂eq price, by how much farmers are willing to reduce their emissions?
- How do marginal abatement costs vary across regions and types of farming?
- How does farm-type heterogeneity affect the design of economic instruments?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

- How much does it cost to farmers to meet a given abatement target?
- For a given CO₂eq price, by how much farmers are willing to reduce their emissions?
- How do marginal abatement costs vary across regions and types of farming?
- How does farm-type heterogeneity affect the design of economic instruments?
- How does the contribution of adoption of carbon-friendly practices compare with reductions of non-CO₂ emissions?
- How do carbon sequestration and emission reductions interact at the farm-type level?

- Micro-economic approach (farm-level)
- Farmers are assumed to behave as gross-margin maximisers
- Price-taker assumption (constant input and output prices)
- Detailed representation of agronomic and CAP-related constraints faced by EU-15 farmers

■ The modelling approach is described in De Cara *et al.* (2005). Revised and updated version based on FADN 2002.

Overview of the model

- Input data: 2002 FADN (EU-15), IPCC Guidelines, National Inventory Reports and CRF, FAO.
- **Typology:** 1074 farm-types, covering annual crop and livestock farmers, as well as mixed crop/livestock systems.
- Exogenous variables: Total area, baseline livestock numbers, yields, prices, variable costs, CAP-related parameters, technical coefficients (agronomic, livestock feeding, emission coefficients, etc.).
- I074 independent models: MILP, maximization of total gross margin subject to crop area, CAP, livestock feeding constraints
- **Calibration:** Based on FADN 2002 data
- Output: Crop area mix, livestock numbers, animal feeding, emissions

Surveyed farms in the FADN sample are grouped into farm-types

- Typology is based on automatic classification techniques
- Variables used for the classification: FADN region (101 regions in EU-15), type of farming, elevation class (3 classes: <300m, 300-600m, >600m), economic size.
- e.g. Large dairy farms in Baden-Württemberg located below 300m
- Distinction between crop- and animal-oriented activities
- Representation of mixed farming systems (both crop and livestock)

Key modelling features

- **CAP measures:** mandatory set aside, milk quotas, compensatory payments, intervention prices, etc.
- Area constraints: total area constraint, maximal area shares, balance between crops, between cereals and oilseeds, etc.
- □ Livestock demography (cattle): Demographic equilibrium between age classes, stable places constraints.
- Livestock feeding: Protein and energy requirements by animal categories, maximum ingested matter
- Manure management: Constant nitrogen excretion rates by animal categories, fixed shares of each management system as in the NCs to the UNFCCC
- Fertilizer use: Total fertilizer expenditures from FADN, split by crop for each farm type, assumption on a composite fertilizer price by crop and by country. Fixed per-hectare N input by crop and by farm-type.

Emission accounting methodology

- Based on the IPCC Good Practice Guidelines emission factors linked to the relevant optimal levels of producing activities at the farm-type level
- Emission coverage consistent with the 2003 NC to the UNFCCC
- Country-differentiated emission factors if available in the 2003 NC to the UNFCCC; default IPCC emission factors otherwise

Baseline run:

- Calibration year: 2002
- Includes Agenda 2000 provisions of the CAP
- \blacksquare An emission tax is added to the objective function: from 0 to $200 \in /tCO_2$

I I I N S E A

-

Emission coverage (cont'd)

Abatement supply (EU-15)

-

⊲

・ロト・西・・田・・田・・日・

Abatement supply (EU-15)

⊲

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

⊲

-

⊲

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

⊲

-

<

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

-

<

Regional abatement rates $(20 \in /tCO_2)$

 CO_2 price: $20 \in /tCO_2eq$ EU abatement: 13.7 MtCO₂eq EU abatement rate: 4.0%

Source of the FADN region map: DG AGRI

Regional abatement rates $(40 \in /tCO_2)$

CO_2 price: $40 \in /tCO_2eq$ EU abatement: 24.1 MtCO₂eq EU abatement rate: 7.0%

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Source of the FADN region map: DG AGRI

I I I I N S E A

Regional abatement rates ($60 \in /tCO_2$)

CO₂ price: $60 \in /tCO_2eq$ EU abatement: $31.2 MtCO_2eq$ EU abatement rate: 9.1%

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Source of the FADN region map: DG AGRI

Regional abatement rates $(200 \in /tCO_2)$

CO₂ price: 200 €/tCO₂eq EU abatement: 72.7 MtCO₂eq EU abatement rate: 21.2%

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Source of the FADN region map: DG AGRI

I I I N S E A

Distribution of abatement rates $(20 \in /tCO_2eq)$

-

⊲

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Distribution of abatement rates $(20 \in /tCO_2eq)$

-

⊲

Distribution of abatement rates $(40 \in /tCO_2eq)$

Distribution of abatement rates ($60 \in /tCO_2eq$)

Distribution of abatement rates $(200 \in /tCO_2eq)$

-

⊲

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

- Three tillage systems analyzed: Conventional, reduced, and minimum tillage
- \blacksquare Upon adoption of alternative tillage practices (conventional \rightarrow reduced or minimum tillage)
 - Change in soil organic carbon (SOC) over time (usually $\Delta SOC > 0$)

- Change in variable costs ($\Delta C \gtrless 0$)
- Change in yields (usually $\Delta Y < 0$, usually increases over time)
- Net impact on gross margin?
- Optimal adoption by farmers as a function of carbon payments

- Definition of Homogeneous Response Units (HRU) for the EU-25
- EPIC simulations: endogenous rotations and uniform management, 10-year simulations, restricted to arable land (Corine Land Cover definition, cf Juraj Balkovic's and Erwin Schmid's presentation)
- Conversion of EPIC results to input data for the economic model (farm-type resolution)
 - Conventional tillage assumed to be the base management practice

- Overlay of the FADN region map from DG-AGRI
- Distinction between elevation classes
- 10-year average absolute change in SOC: tC/ha/yr by crop×farm-type
- Average relative changes in yield: % change of base yield by crop×farm-type. Applied to FADN crop yields

- Based on Baden-Württemberg case study conducted within INSEA (Schmid et al., 2005)
- Cost calculation is derived from KTBL (2004) and Blank (2005), and accounts for
 - Changes in number of field trips
 - Machinery variable costs (maintenance, fuel, insurance, etc.)
 - Additional use of pesticides upon adoption of less intensive tillage practices

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

	Reduced	l tillage	Minimum tillage					
	Cereals	Root crops	Cereals	Root crops				
	and oilseeds	and maize	and oilseeds	and maize				
	Operation (nb of trips)							
Ploughing	-1	-1	-1	-1				
Sowing	-1		-1	-1				
Field tiller			-2	-1				
Chisel plough	1	1						
Rotary harrow		1						
Combined rotary harrow	-2	-2	-2	-2				
Herbicide spraying			2	2				
Direct sowing			1	1				
Harvest chopper			1	1				
Combined driller	1							
	Others							
Herbicide (%)	10%	15%	30%	30%				
Seeds (€/ha)								
Labour (h/ha)	-1,3	-1,8	-1,8	-2,0				
Cost savings (€/ha)	14,0	6,1	32,6	11,3				

Source: Schmid et al., 2005

Modelling approach and assumptions

- \blacksquare Three sets of simulations (3 \times 1074), one for each tillage system
- A constraint is added to prevent grassland from being converted into cropland (only additional carbon sequestration from alternative tillage is accounted for)
- □ Optimal choice of a tillage system depends on the ranking of optimal gross margins under the three systems (π_k^{conv} , π_k^{redu} , π_k^{mini}). At the farm-type level, only one system can be chosen
- □ Costs are calibrated to ensure consistency with the assumption that conventional tillage is the baseline management.
- Adjustment costs are treated as fixed costs:
 - Does not impact the optimal solution at the farm-type level for one tillage system

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

But does affect the ranking between different tillage systems

Comparison of aggregate results under each tillage system (100% adoption rates, CO_2 value is zero)

	Conv.	Reduced		Minimum			
		Δ	%	Δ	%		
		(10 ⁹ €)					
Total gross margin	89.8	-0.11	-0.1%	-1.54	-1.7%		
	(10 ⁶ tCO ₂ eq)						
N ₂ O agricultural soils	171.0	-0.55	-0.3%	-2.34	-1.4%		
N ₂ O manure management	12.4	0.01	0.1%	0.01	0.1%		
CH ₄ manure management	39.3	0.01	0.0%	0.07	0.2%		
CH ₄ rice cultivation	0.7	0.00	-0.2%	-0.03	-4.5%		
CH ₄ enteric fermentation	118.5	-0.05	-0.0%	0.17	0.1%		
Total emissions	341.9	-0.57	-0.2%	-2.12	-0.6%		
Carbon sequestration	-	-20.88	-	-34.56	-		
Total net emissions	341.9	-21.46	-6.3%	-36.68	-10.7%		

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Distribution of gross margin impacts of alternative tillage systems

Distribution of gross margin impacts of alternative tillage systems (adjusted)

Adjustment costs: Reduced=10.64 €/ha, minimum=14.43 €/ha

⊲

Area under alternative tillage management

⊲

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Abatement and carbon sequestration

ヘロト 人間ト 人間ト 人間ト

æ

Abatement and carbon sequestration

<

Conclusions

- Abatements from agriculture can contribute to emission reductions at current CO₂ prices
- Disaggregated approach, which highlights the importance of marginal abatement cost heterogeneity for the design of economic instruments (cost-effectiveness)
- Importance of the use of CO₂ tax revenue and/or initial allocation of emission allowances
- Disaggregated and static modelling approach: complement, rather than substitute, to partial equilibrium and dynamic approaches (cf EU-FASOM)

□ Control cost issues and monitoring (carbon sequestration)